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ABSTRACT 

Dynamical symmetry breaking in the supersymmetric standard model is cat- 

alyzed by a Nambu-Jona-Lasinio mechanism involving the top quark multiplet. 

The resulting low energy theory is precisely that of the minimal supersymmetric 

standard model, but with specific mass relations for the top quark, composite 

Higgs scalars and their supersymmetric partners. Exploiting the compositeness 

condition for the Higgs multiplet, these masses are determined using renormai- 

ization group techniques. 



The increasing experimental lower bound on the top quark mass, which is 

presently at 60 GeV, has led several authors”“” P”” to speculate that top quark 

self interactions, operating at a high energy scale A, may be of sufficient strength 

to trigger the formation of a top quark condensate. This in turn provides for 

the dynamical breakdown of the electroweak symmetry, without the necessity 

of fundamental scalars. The interaction, however, generates a scalar ft bound 

state with the quantum numbers of the Higgs boson. At energies far below 

the compositeness scale A, this Higgs bound state behaves as an independent 

dynamical degree of freedom. The resulting low energy theory is just the standard 

model but with specific conditions relating the top quark and composite Higgs 

boson mssses to the electroweak and compositeness scales. 

The Higgs compositeness condition takes the form of the vanishing of its 

wavefunction renormalization factor at scale A: .Z’k(p’) + 0 ss p -+ A. The top 

quark mass is then determined ss a function of A by solving the renormalization 

group equations of the standard model while implementing the compositeness 

condition. Integration of the one-loop renormalization group equations La) subject 

to the compositeness condition leads, for a given A, to a unique physically ac- 

ceptable renormalization flow trajectory. For A * lO”GeV, the trajectory gives 

a top quark mass, rnr = 231GeV, while the composite Higgs boson has mass 

mkigps = 258 GeV. As discussed by Bardeen, Hill and Lindner ~1, the numerical 

value of the top quark mass is controlled by the quasi-infrared fixed point”’ of 

the renormalization group equation for the top quark Yukawa coupling. 

To model the dynamics responsible for the top quark condensation 12)(3), a 

DCS or Nambu-Jona-Lasinio (NJL) mechanism “’ was proposed to act at the 

compositeness scale. The Lagrangian at scale A is taken as (neglecting masses 

small compared to mr) 

LA = lkinetic f G(htft)(fRqL)$ 0) 

with lkiseric the usual gauge invariant fermion and gauge boson kinetic terms of 
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the standard model. Using a large NC approximation, a self-consistent calcula- 

tion of the top quark mass yields the gap equation 

To insure that mr is of the order of the electroweak scale and not the much larger 

compositeness scale, it is necessary to fine tune G so that G-’ E; $A’. The 

presence of the quadratic divergence and associated gauge hierarchy as well ss 

the requisite fine tuning is the usual one encountered in the standard model. In 

the present context, however, its appearence is restricted to the gap equation. 

The imposition of the gap equation leads in turn to the emergence of the bound 

state Higgs scalar and the standard model as the low energy effective Lagrangian. 

One approach which has been advocated to ameliorate the gauge hierarchy 

problem in the usual standard model is to make the model supersymmetric. The 

supersymmetric (SUSY) standard model is free from quadratic divergences ss a 

consequence of the softened ultraviolet behavior resulting from the cancellation 

between boson and fermion loops (no-renormalization theorem). In addition, the 

extra degrees of freedom due to the SUSY reduces the effects of the strong gauge 

interaction relative to those of the Yukawa interaction in the running of the top 

Yukawa coupling. As such the position of the quasi-infrared fixed point is lowered 

and consequently so should the value of the top quark mass. In the present letter, 

we investigate a minimal SUSY standard model, without fundamental Higgs 

multiplets, in which the condensation of the top quark multiplet dynamically 

breaks the electroweak symmetry. For clarity of presentation, we shall ignore all 

quark and lepton multiplet masses other than the top quark. Their effects can 

be included in a straightforward manner. 

To implement the symmetry breaking, we use an SU(3) xSU(2)xU(l) in- 

variant (softly broken) supersymmetric Nambu-Jona-Lasinio interaction”’ “’ in 

addition to the gauge couplings of the SUSY standard model. The action at scale 
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A thus takes the form 

rA = I-YM + @+Q + Tce-2V+ + B”~-ZVD@~ 
I 

(1 _ ~282$2) 

+G (QT”)] (1 - 2~3287, 

where Q = (L) is the SU(2) doublet of top and bottom quark chiral superfield 

multiplets and TC (Bc) is the SU(2) singlet charge conjugate top (bottom) quark 

SUSY chiral multiplet. I’YM is the usual SUSY gauge field kinetic energy terms, 

while the quark multiplets interact with the SUSY SU(3)xSU(2)xU(l) gauge 

fields 

1 
V, = g3G’;Xa + g2Wi;a’ + ;g,Y 

1 
VT = g3GniXa + $k’ 

1 1 
VB = mG*f - igly, 

The color singlet, SU(2) doublet composite chiral field QT” appearing in the 

NJL term interacts with 

VH = g2w’&7’ - ;g,y. 

Finally, A2 provides the explicit soft SUSY breaking scale which arises from 

an underlying supergravity’O’ , with the higher dimension composite fields QT” 

feeling twice the breaking strength as the individual Q or T” fields. In addition, 

it is assumed that the net hypercharge in the fundamental theory vanishes so that 

no bare or induced Fayet-Iliopoulos term is present for the U(1) hypercharge field 

Y. 
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Including the explicit soft SUSY breaking effects, the pure chiral massive top 

multiplet propagator is 14 

i < O/T (T(l)TC(2)) 10 >= I 
~,iP(zl-Ir)e-(e,uLi.-e.u*i,)Pu 

X 
mT 

p’+m$+Az (6 - ~212 - 2@1@2 (p2 -“;$)I , 

while the mixed propagator takes the form 

i < OIT (T(1)‘44) 10 >= / ~,~P(~‘-~,),-(e,~“d,+e~u~~~)P~ 

1 
X 

p2+m;+A2 I[ 
c2ed&p, + ~~+@zPPA~ _ 0287A2 

p2+m& 1 12 . (7) 

The dynamically generated top quark msss is determined self consistently using 

the Schwinger-Dyson equation to leading order in NC which is displayed in Figure 

1. Using the chiral propagator of equation (6) one finds 

A 

mT= -iGNc -@ 
J 

2A2mT 

(2~)~ (p2 + m$)(p2 + m$ + Az) (8) 

The massive solution then yields the gap equation 

G-1 = !&$ [(l+~)ln(m~~A2)-~ln(~)]. (9) 

It is clear from equation (8) that if there is no explicit SUSY breaking so that 

A vanishes, then the Schwinger-Dyson equation is satisfied only by the trivial 

solution my = 0 and there is no mass generation. This is a consequence of 

the SUSY no-renormalization theorem”” Moreover. the dependence on the 

compositeness scale A is only logarithmic. The presence of the supersymmetry 
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has replaced the quadratic dependence on A by that of the SUSY hreaking scale 

A. We shall see that consistent solutions to the SUSY NJL model exist with A 

of the order of the electroweak scale. Consequently, the fine tuning problem has 

been eliminated. 

To facilitate the construction of the effective low energy theory, it proves 

convenient to introduce supersymmetric Lagrange multiplier chiral superfields, 

H and H’, and to recast the action of equation (3) in the form 

rr = rye + I&?-Q +Tc,-2VT~~ + BCe-ZVBjtjC (l-~Z/jZk) 1 
+ J dVZ!ieaVHH(l - ZA’8’g”) 

- / dS(moH’H - gz,H’QTC) - / dS(m&i!?’ - gT,,rCgR’). (10) 

Application of the Euler-Lagrange equations for H and H’ gives 

moH = m. (QT’) 

STn - c ZVH --(Qp )e (1 -2A2B2~) , 1 
which when substituted into equation (IO) reproduces the original action (3) 

provided we identify G = 5. We see from equation (11) that H and H’ are 

composite chiral superfields. H is a color singlet, SU(2) doublet and carries 

hypercharge -i, while H’ has the charge conjugate quantum numbers. Clearly H 

and H’ have precisely the quantum numbers of the two Higgs multiplets required 

in the minimal SUSY standard model. 

In addition to the action of equation (IO), a gauge invariant kinetic term for 

H’ will also get induced. Evaluating the contribution displayed in Figure 2 using 



the mixed propagator of equation (7) yields the action piece 

Zp$ dVH’e-2VHR’(1 + 2A2e282), where 

s; NC ~2 
Zw = -$+-In(-) 

P2 
(12) 

and p is a normalization scale. As fi + A, ZHI vanishes and the H’ composite 

dissaasociates. On the other hand, at low energies far below A, H’ acts as an 

independent dynamical degree of freedom and its propagation must be included 

in the low energy effective action. It is important to note that the soft SUSY 

breaking term induced for H’ is opposite in sign to that of the H field. This drives 

the electroweak symmetry breakdown in the effective theory. (An analogous 

situation occurs in the case of radiative electroweak breaking”*’ in the SUSY 

standard model.) With the inclusion of the composite Higgs fields, the dynamics 

at the low energy scale Mz is governed by the minimal (softly broken) SUSY 

standard model action 

rZ = rYM + &%Q + 9,-2v+ + BCe-2VBBC (1 _ Az,Jz#z) 1 

+ I dVRezVXH(l - 2A202f?) 

+ 
I 

dVH’e-2VHl?r(l + ZA’f?‘k) 

_ 
I 

dS(mH’H - gTH’QTC) - 
I 

dS(mHH’ - gTi+CQg’). (13) 

In obtaining this action we have resealed the H’ field by H’ - 1 H’ and have 
\/ZH’ 

defined gT = & STO, m = hrno so that G = $ = $. 
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The vacuum structure and mass spectrum of the low energy theory are de- 

termined as usual from the low energy effective potential”3’ 

V = ;D; + ;D&i + ; D&c + FHFH + Fpp,yg 

+2A2(&A~ - AH,&,), 

in conjunction with the auxiliary field equations of motion 

(14) 

Dy = ;gl(&AH - A,qt&p) 

Dwi = g2(A~+&p - &+AH) 

DC* = 0 

FH~H’ = mAH. (15) 

Writing H = (E”) and H’ = (HA, H:), the vacuum expectation values of H 

and H’ are given by 

< OjHlO >= 5 (“,) 

< O/H’10 >= ‘(v’, 0), 
45 

(1‘3) 

and the ground state expectation value of the energy is 

< OIVIO >= t(m2 - 2A’)u’ ’ + i(rn’ + 2A2)u2 + &(g: + gi)(v’ ’ - v’)‘. (17) 

Choosing 2A2 > m2, the potential minimum is realized by v = 0 and 

;(g; + 9;)” ’ = (2A2 - m’). (18) 

The SUSY Higgs mechanism results in W* and Z boson masses having their 
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usual standard model values 

M; = (sf ; !a J 2 M; = M;cos@~. (19) 

Defining e = gr cosBw = grsin6’w and the fine structure constant a = $, the 

potential minimum condition becomes m * = 2A2 - $.Mi. There remain three 

neutral and two charged massive Higgs scalars % (AH;, + AL;), AH, (AL,,), AH+ 

with masses squared Mi, 2m2(2m2), (2 m* + M$), respectively. The residual 

higgsino fields are the neutral $H;, and the neutral n = m’H +iMzxz with mass ~sl 

J- m + M, and the charged $H; and x- = 
rnh~- +i\/?Mw Xw- 

m1+2M$ 

with mass dw. 

A rough prediction for the top quark mass in the large NC SUSY NJL model 

can be extracted by using the expression for Z;I given in equation (12). So doing 

we find 

mT = &,,“’ = -$-&“I = 5 &, (20) 

where Y’ = 246 GeV is the electroweak scale. For a compositeness scale of 

A ‘- 1015 GeV, this gives no = 164 GeV. In obtaining this value, we have set 

fl = mT, the result being insensitive to this choice. This estimate corresponds 

to the contribution of the top quark multiplet bubble sum only. A more precise 

determination of rn~ including all interactions of the SUSY standard model will 

be presented shortly. 

Prior to doing that, however, we note that within the bubble sum approxima- 

tion, we can also extract the value of the SUSY breaking scale A and hence the 
/ 

mass of the scalar top quark SUSY partner which is given by c/m+ + AZ. Em- 

ploying the condition for the potential minimum. equation (18), in conjunction 

with the gap equation (9) for G-’ = $, and the above determined top quark 
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mass, we find that the SUSY breaking scale A satilies the equation 

In($) +(l+!$)ln(l+-$-) =t%ln($). (21) 

For rn~ L- p c- 164 GeV, A - 1Or5 Gev, and using Mz = 91 GeV, this yields A Y 

260 GeV. Here A depends very sensitively on mu. Thus consistent solutions to 

the SUSY NJL model exist with A and rn~ roughly of the order of the electroweak 

scale when the compositeness scale is many orders of magnitude larger. The 

model requires no fine tuning to achieve this hierarchy of scales. 

The values for rn~ and A which we have thus far extracted are somewhat 

crude in that they arise from a summation of only the top quark multiplet loops. 

We shave seen, however, that at energies far below the compositeness scale A, 

the Higgs multiplet develops gauge invariant kinetic terms in addition to their 

Yukawa couplings and the model reduces to the full SUSY standard model. As 

such, we can utilize the low energy SUSY standard model renormalization group 

equations, along with the compositeness condition ZHI + 0 as @ + A, to deter- 

mine more precisely the top quark mass as a function of the compositeness scale 

A and the SUSY breaking scale A. Note that in making this determination of 

mu, we do not need to identify the specific dynamical mechanism by which the 

Higgs multiplet is bound. It proves convenient [*I to rescale the induced Higgs 

field H’ by the running top Yukawa coupling gT(p*) of the SUSY standard model 

so that H’ + &H’. So doing, the wavefunction renormalization constant is 

ZH’b*) = &TJ and the compositeness condition translates into a diverging run- 

ning top Yukawa coupling at scale A. Defining the scaling variable t = In (fi), 

the one-loop renormalization group equations for the SUSY standard model take 

the form lr*l”” 

16r2$T = gT 
13 

6g; - fg; - 39; - 79; 

16rz;g3 = -39; 
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167r* $,, = g; 

16n2;gr = 11s;. (22) 

In addition, the value of the gauge couplings at the scale Mz are taken as 

gf(Mz) = 0.127, gi(Mz) = 0.425 and gi(Mz) = 1.44. Ignoring the SU(2) 

and U(1) coupling constants gr and gr, the top Yukawa coupling constant has 

a quasi-IR fixed point given by gT(Mz) = $gs(Mz). This yields a top msss 

of roughly 197 GeV. More accurately, the renormalization group equations can 

be numerically integrated to find the top quark mass rn~ = -&gT(mT)v’ for a 

given compositeness scale A. In performing this integration, however, we must 

incorporate the fact that the SUSY partners have masses of order the SUSY 

breaking scale A. Thus for scales ‘A these degrees of freedom cease to con- 

tribute. A rough accounting for this is achieved by allowing A to vary such that 

for scales greater than A we employ the SUSY standard model renormalization 

group equations (22), while for scales less than A we use the ordinary standard 

model renormalization group equations given by l*l 

167r*;g~ = gT 
9 9, 17 
59; - 8s; - 492 - 129: 

16z2$gs = -7s; 

16rr2;g2 = -;g; 

167~ 
zd 41, 

ZsI = 691. (23) 

The resulting top quark mass is displayed in Table 1 as a function of both A and 

A. 
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L 

Table 1. The Top Quark Mass As A Function Of The Compositeness 

Scale A And The SUSY Breaking Scale A (All Values Are In GeV) 

In conclusion, we have studied the possibility of implementing the electroweak 

symmetry breaking in the SUSY standard model via a dynamical top quark mul- 

tiplet condensation mechanism in which the Higgs multiplets are composites. We 

find phenomenologically acceptable values for the top quark mass corresponding 

to SUSY breaking scales of the order of the electroweak scale and a range of 

compositeness scales. For example, with a SUSY breaking scale of lo3 GeV and 

a compositeness scale of 1015 GeV, the top quark mass is 203 GeV. 
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Figure Captions 

Figure 1: Schwinger-Dyson equation for the dynamically generated top quark mass. 

Figure 2: Induced kinetic term for the H’ multiplet. 
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